

COTS Guide for Tantalum Capacitors

INTRODUCTION

Tantalum electrolytic capacitors are the preferred choice in applications where volumetric efficiency, stable electrical parameters, high reliability, and long service life are primary considerations. The stability and resistance to elevated temperatures of the tantalum/tantalum oxide/manganese dioxide system make solid tantalum capacitors an appropriate choice for today's surface mount assembly technology.

Vishay Sprague has been a pioneer and leader in this field, producing a large variety of tantalum capacitor types for consumer, industrial, automotive, military, and aerospace electronic applications.

Tantalum is not found in its pure state. Rather, it is commonly found in a number of oxide minerals, often in combination with Columbium ore. This combination is known as "tantalite" when its contents are more than one-half tantalum. Important sources of tantalite include Australia, Brazil, Canada, China, and several African countries. Synthetic tantalite concentrates produced from tin slags in Thailand, Malaysia, and Brazil are also a significant raw material for tantalum production.

Electronic applications, and particularly capacitors, consume the largest share of world tantalum production. Other important applications for tantalum include cutting tools (tantalum carbide), high temperature super alloys, chemical processing equipment, medical implants, and military ordnance.

Vishay Sprague is a major user of tantalum materials in the form of powder and wire for capacitor elements and rod and sheet for high temperature vacuum processing.

THE BASICS OF TANTALUM CAPACITORS

Most metals form crystalline oxides which are non-protecting, such as rust on iron or black oxide on copper. A few metals form dense, stable, tightly adhering, electrically insulating oxides. These are the so-called "valve" metals and include titanium, zirconium, niobium, tantalum, hafnium, and aluminum. Only a few of these permit the accurate control of oxide thickness by electrochemical means. Of these, the most valuable for the electronics industry are aluminum and tantalum.

Capacitors are basic to all kinds of electrical equipment, from radios and television sets to missile controls and automobile ignitions. Their function is to store an electrical charge for later use.

Capacitors consist of two conducting surfaces, usually metal plates, whose function is to conduct electricity. They are separated by an insulating material or dielectric. The dielectric used in all tantalum electrolytic capacitors is tantalum pentoxide.

Tantalum pentoxide compound possesses high-dielectric strength and a high-dielectric constant. As capacitors are being manufactured, a film of tantalum pentoxide is applied to their electrodes by means of an electrolytic process. The film is applied in various thicknesses and at various voltages and although transparent to begin with, it takes on different colors as light refracts through it. This coloring occurs on the tantalum electrodes of all types of tantalum capacitors. Rating for rating, tantalum capacitors tend to have as much as three times better capacitance/volume efficiency than aluminum electrolytic capacitors. An approximation of the capacitance/volume efficiency of other types of capacitors may be inferred from the following table, which shows the dielectric constant ranges of the various materials used in each type. Note that tantalum pentoxide has a dielectric constant of 26, some three times greater than that of aluminum oxide. This, in addition to the fact that extremely thin films can be deposited during the electrolytic process mentioned earlier, makes the tantalum capacitor extremely efficient with respect to the number of microfarads available per unit volume. The capacitance of any capacitor is determined by the surface area of the two conducting plates, the distance between the plates, and the dielectric constant of the insulating material between the plates.

COMPARISON OF CAPACITOR DIELECTRIC CONSTANTS			
DIELECTRIC	e DIELECTRIC CONSTANT		
Air or Vacuum	1.0		
Paper	2.0 to 6.0		
Plastic	2.1 to 6.0		
Mineral Oil	2.2 to 2.3		
Silicone Oil	2.7 to 2.8		
Quartz	3.8 to 4.4		
Glass	4.8 to 8.0		
Porcelain	5.1 to 5.9		
Mica	5.4 to 8.7		
Aluminum Oxide	8.4		
Tantalum Pentoxide	26		
Ceramic	12 to 400K		

In the tantalum electrolytic capacitor, the distance between the plates is very small since it is only the thickness of the tantalum pentoxide film. As the dielectric constant of the tantalum pentoxide is high, the capacitance of a tantalum capacitor is high if the area of the plates is large:

$$C = \frac{eA}{t}$$

where

C = capacitance

e = dielectric constant

A = surface area of the dielectric

t = thickness of the dielectric

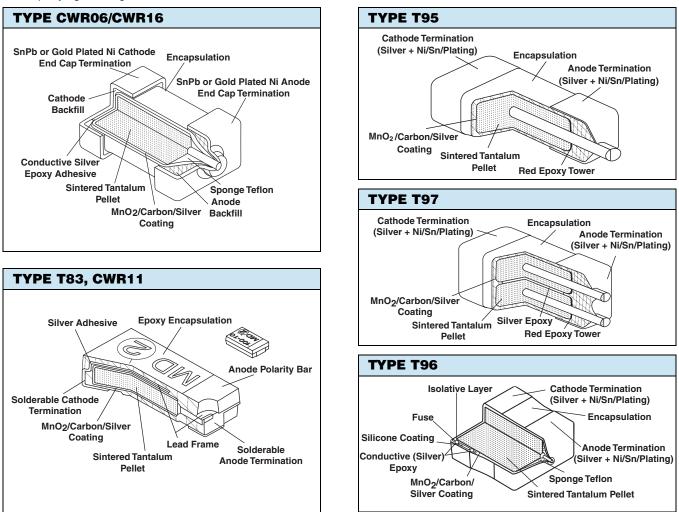
Tantalum capacitors contain either liquid or solid electrolytes. In solid electrolyte capacitors, a dry material (manganese dioxide) forms the cathode plate. A tantalum lead is embedded in or welded to the pellet, which is in turn connected to a termination or lead wire. The drawings show the construction details of the surface mount types of tantalum capacitors shown in this catalog.

SOLID ELECTROLYTE TANTALUM CAPACITORS

Solid electrolyte capacitors contain manganese dioxide, which is formed on the tantalum pentoxide dielectric layer by impregnating the pellet with a solution of manganous nitrate. The pellet is then heated in an oven, and the manganous nitrate is converted to manganese dioxide.

The pellet is next coated with graphite, followed by a layer of metallic silver, which provides a conductive surface between the pellet and the external termination.

The pellet, with lead wire and header attached, is inserted into the can where the pellet is held in place by solder. The can cover is also soldered into place.

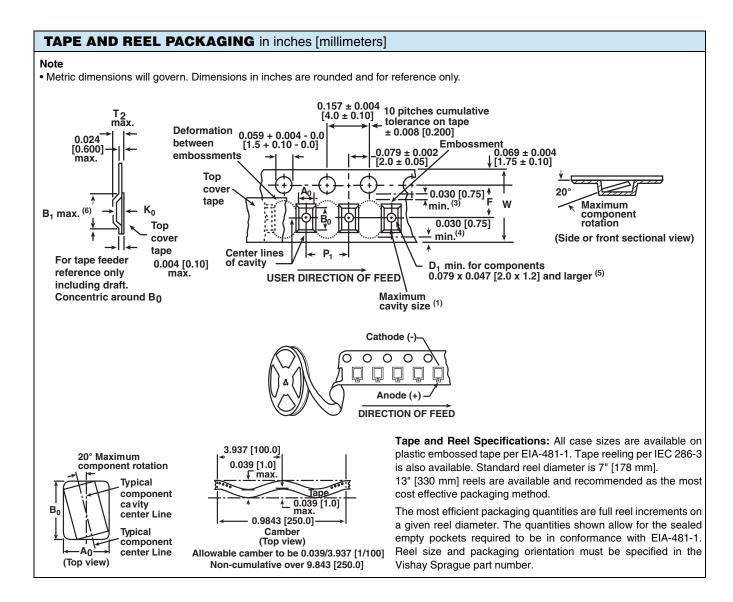

After assembly, the capacitors are tested and inspected to assure long life and reliability. It offers excellent reliability and high stability for consumer and commercial electronics with the added feature of low cost.

Surface mount designs of "Solid Tantalum" capacitors use lead frames or lead frameless designs as shown in the accompanying drawings.

Solid electrolyte designs are the least expensive for a given rating and are used in many applications where their very small size for a given unit of capacitance is of importance. They will typically withstand up to about 10 % of the rated DC working voltage in a reverse direction. Also important are their good low temperature performance characteristics and freedom from corrosive electrolytes.

Vishay Sprague patented the original solid electrolyte capacitors and was the first to market them in 1956. Vishay Sprague has the broadest line of tantalum capacitors and has continued its position of leadership in this field. Data sheets covering the various types and styles of Vishay Sprague capacitors for consumer and entertainment electronics, industry, and military applications are available where detailed performance characteristics must be specified.

SOLID TANT	SOLID TANTALUM CAPACITORS					
SERIES	T83	Т95	Т96	CWR11		
PRODUCT IMAGE	47715 70 8	11	11	Q 106 . 3		
ТҮРЕ	Surface Mount TANTAMOUNT® Chip, Hi-Rel COTS, Molded Case	Surface Mount TANTAMOUNT® Chip, Hi-Rel COTS, Conformal Coated	Surface Mount TANTAMOUNT® Chip, Hi-Rel COTS, Conformal Coated	TANTAMOUNT [®] Solid Electrolyte Chip, Molded		
FEATURES	Hi-Rel COTS, lead (Pb)-free, RoHS compliant	Hi-Rel, Maximum CV, lead (Pb)-free, RoHS compliant	Hi-Rel, Built-In Fuse, Maximum CV, lead (Pb)-free, RoHS compliant	MIL-C-55365/8 Qualified		
TEMPERATURE RANGE (°C)	- 55 ℃ to + 125 ℃	- 55 ℃ to + 125 ℃	- 55 ℃ to + 125 ℃	- 55 ℃ to + 125 ℃		
CAPACITANCE RANGE (µF)	0.1 μF to 330 μF	0.10 μF to 680 μF	0.10 μF to 680 μF	0.10 μF to 100 μF		
VOLTAGE RANGE (V)	4 ~ 50	4 ~ 50	4 ~ 50	4 ~ 50		
CAPACITANCE TOLERANCE (%)	± 20, ± 10	± 20, ± 10	± 20, ± 10	± 20, ± 10		
LEAKAGE CURRENT (µA)	0.01 CV or 0.5 μΑ max.	0.01 CV or 0.5 μΑ max.	0.01 CV or 0.5 μΑ max.	0.01 CV or 0.5 μΑ max.		
DISSIPATION FACTOR	4 ~ 8 max.	4 ~ 20 max.	6 ~ 14 max.	4 ~ 12 max.		
CASE CODES	A, B, C, D, E	B, C, D, R, S, V, X, Y, Z	R	A, B, C, D		


SOLID TANTA	SOLID TANTALUM CAPACITORS					
SERIES	CWR06	CWR16	T97	Т98		
PRODUCT IMAGE			L. L			
ТҮРЕ	Surface Mount MIDGET [®] Solid Electrolyte Chip, Conformal Coated	Surface Mount MIDGET [®] Solid Electrolyte Chip, Conformal Coated	Surface Mount TANTAMOUNT [®] Chip, Hi-Rel COTS, Conformal Coated	Surface Mount TANTAMOUNT [®] Chip, Hi-Rel COTS, Conformal Coated		
FEATURES	MIL-C-55365/4 Qualified, RoHS compliant	MIL-C-55365/13 Qualified, RoHS compliant	Hi-Rel, Maximum CV, Ultra-Low ESR lead (Pb)-free, RoHS compliant	Hi-Rel, Maximum CV, Ultra-Low ESR lead (Pb)-free, RoHS compliant, Built-In Fuse after ESR		
TEMPERATURE RANGE (°C)	- 55 ℃ to + 125 ℃	- 55 ℃ to + 125 ℃	- 55 ℃ to + 125 ℃	- 55 ℃ to + 125 ℃		
CAPACITANCE RANGE (µF)	0.10 μF to 100 μF	0.33 μF to 330 μF	22 μF to 1500 μF	15 μF to 1500 μF		
VOLTAGE RANGE (V)	4 ~ 50	4 ~ 35	4 ~ 50	4 ~ 63		
CAPACITANCE TOLERANCE (%)	± 20, ± 10	± 20, ± 10	± 20, ± 10	± 20, ± 10		
LEAKAGE CURRENT (µA)	0.01 CV or 0.5 μA max.	0.01 CV or 0.5 μA max.	0.01 CV or 0.5 μA max.	0.01 CV or 0.5 μA max.		
DISSIPATION FACTOR	6 ~ 12 max.	6 ~ 12 max.	6 ~ 8 max.	6 ~ 8 max.		
CASE CODES	A, B, C, D, E, F, G, H	A, B, C, D, E, F, G, H	E, F, R, V	E, F, R, V, Z		

* Preliminary, contact Product Marketing for availability.

COTS Guide for Tantalum Capacitors

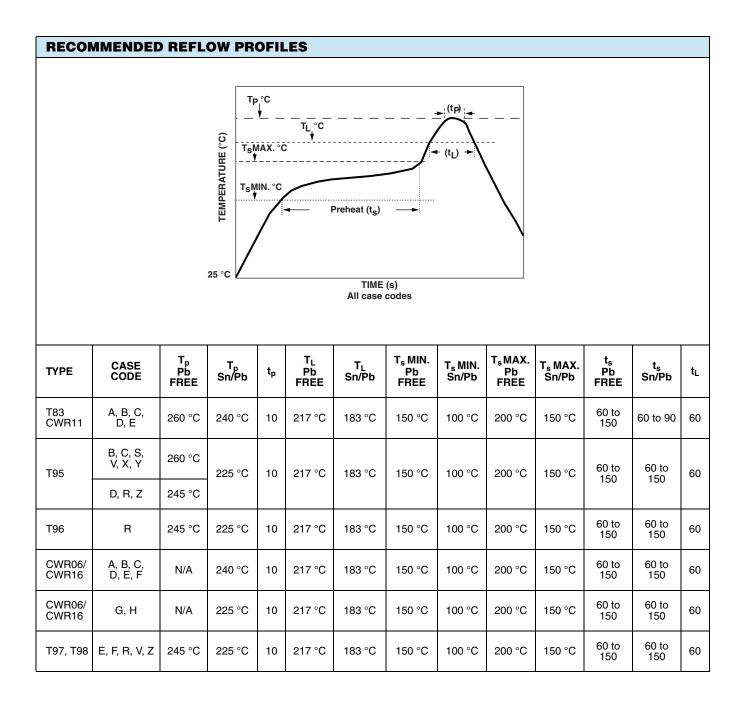
Vishay Sprague

CARRIER TAPE DIMENSIONS in inches [millimeters]							
T83 - CWR11							
CASE CODE	TAPE SIZE	B ₁ (MAX.)	D ₁ (MIN.)	F	T ₂	Р	w
A, B	8 mm	0.165 [4.2]	0.039 [1.0]	0.138 ± 0.002 [3.5 ± 0.05]	0.094 [2.4]	0.157 ± 0.004 [4.0 ± 1.0]	$\begin{array}{c} 0.315 \pm 0.012 \\ [8.0 \pm 0.3] \end{array}$
C, D, E	12 mm	0.323 [8.2]	0.059 [1.5]	$\begin{array}{c} 0.217 \pm 0.002 \\ [5.5 \pm 0.05] \end{array}$	0.177 [4.5]	0.315 ± 0.004 [8.0 ± 1.0]	$\begin{array}{c} 0.472 \pm 0.012 \\ [12.0 \pm 0.30] \end{array}$
T95 - T96							
CASE CODE	TAPE SIZE	B ₁ (MAX.)	D ₁ (MIN.)	F	P ₁	T ₂ (MAX.)	w
A, S	8 mm	0.179 [4.55]	0.039 [1.0]	0.138 ± 0.002 [3.5 ± 0.05]	0.157 ± 0.004 [4.0 ± 0.10]	0.098 [2.5]	0.315 + 0.012 [8.0 ± 0.3]
B, V, X, Y, Z	12 mm	0.323 [8.2]	0.059 [1.5]	0.217 ± 0.002 [5.5 ± 0.05]	0.157 ± 0.004 [4.0 ± 0.10]	0.256 [6.5]	$\begin{array}{c} 0.472 \pm 0.012 \\ [12.0 \pm 0.30] \end{array}$
C, D, R	12 mm Double Pitch	0.323 [8.2]	0.059 [1.5]	0.217 ± 0.002 [5.5 ± 0.05]	0.315 ± 0.004 [8.0 ± 0.10]	0.256 [6.5]	0.472 ± 0.012 [12.0 ± 0.30]

CARRIER	CARRIER TAPE DIMENSIONS in inches [millimeters]						
CWR06/CWR16	CWR06/CWR16						
CASE CODE	TAPE SIZE	B ₁ (MAX.)	D ₁ (MAX.)	F	P ₁	T ₂ (MAX.)	W
А	8 mm	0.179 [4.55]	0.039 [1.0]	0.138 ± 0.002 [3.5 ± 0.05]	0.157 ± 0.004 [2.0 ± 0.05]	0.098 [2.5]	0.315 + 0.012 - 0.004 [8.0 ± 0.3 - 0.1]
B, C, D, E, F	12 mm	0.323 [8.2]	0.059 [1.5]	$\begin{array}{c} 0.217 \pm 0.002 \\ [5.5 \pm 0.05] \end{array}$	0.157 ± 0.004 [2.0 ± 0.05]	0.256 [6.5]	$\begin{array}{c} 0.472 \pm 0.012 \\ [12.0 \pm 0.30] \end{array}$
G, H	16 mm	0.476 [12.1]	0.059 [1.5]	0.295 ± 0.004 [7.5 ± 0.1]	$\begin{array}{c} 0.315 \pm 0.004 \\ [8.0 \pm 0.10] \end{array}$	0.315 [8.0]	0.642 Max. [16.3] Max.
T97 - T98					•		
CASE CODE	TAPE SIZE	B ₁ (MAX.)	D ₁ (MAX.)	F	P ₁	T ₂ (MAX.)	w
V	12 mm	0.388 [9.79]	0.059 [1.5]	0.218 ± 0.02 [5.5 ± 0.5]	0.317 ± 0.004 [8.0 ± 0.10]	0.089 [2.25]	0.479 + 0.012 - 0.004 [12.0 + 0.3 - 0.1]
E	16 mm	0.388 [9.79]	0.059 [1.5]	$\begin{array}{c} 0.297 \pm 0.02 \\ [7.5 \pm 0.5] \end{array}$	0.317 ± 0.004 [8.0 ± 0.10]	0.174 [4.40]	0.635 + 0.012 - 0.004 [16.0 + 0.3 - 0.1]
F, R	16 mm	0.388 [9.79]	0.059 [1.5]	$\begin{array}{c} 0.297 \pm 0.02 \\ [7.5 \pm 0.5] \end{array}$	$\begin{array}{c} 0.476 \pm 0.004 \\ [12.0 \pm 0.1] \end{array}$	0.163 [4.10]	0.635 + 0.012 - 0.004 [16.0 + 0.3 - 0.1]
Z	16 mm	0.388 [9.79]	0.059 [1.5]	$\begin{array}{c} 0.297 \pm 0.02 \\ [7.5 \pm 0.5] \end{array}$	$\begin{array}{c} 0.476 \pm 0.004 \\ [12.0 \pm 0.1] \end{array}$	0.239 [6.06]	0.635 + 0.012 - 0.004 [16.0 + 0.3 - 0.1]
T95 Y PACKAG	T95 Y PACKAGE CODE						
CASE CODE	TAPE SIZE	B ₁ (MAX.)	D ₁ (MAX.)	F	P ₁	T ₂ (MAX.)	w
R	16 mm	0.379 [9.55]	0.055 [1.40]	0.295 ± 0.004 [7.50 ± 0.10]	$\begin{array}{c} 0.315 \pm 0.004 \\ [8.00 \pm 0.10] \end{array}$	0.273 [6.93]	$\begin{array}{c} 0.630 \pm 0.012 \\ [16.00 \pm 0.30] \end{array}$
D (preliminary)	16 mm	0.376 [9.62]	0.059 [1.50]	0.295 ± 0.004 [7.50 ± 0.10]	$\begin{array}{c} 0.315 \pm 0.004 \\ [8.00 \pm 0.10] \end{array}$	0.210 [5.33]	$\begin{array}{c} 0.630 \pm 0.012 \\ [16.00 \pm 0.30] \end{array}$

* Preliminary, contact Product Marketing for availability

RECOMMENDED VOLTAGE DERATING GUIDELI	INES				
STANDARD CONDITIONS: FOR EXAMPLE: OUTPUT FILTERS					
Capacitor Voltage Rating	Operating Voltage				
4.0	2.5				
6.3	3.6				
10	6.0				
16	10				
20	12				
25	15				
35	24				
50	28				
63	38				
SEVERE CONDITIONS: FOR EXAMPLE: INPUT FILTERS					
Capacitor Voltage Rating	Operating Voltage				
4.0	2.5				
6.3	3.3				
10	5.0				
16	8.0				
20	10				
25	12				
35	15				
50	24				
63	32				


COTS Guide for Tantalum Capacitors

Vishay Sprague

ANDARD PACK	AGING QUANTITY			
CEDIEC	CASE CODE			
SERIES	CASE CODE	7" REEL	13" REEL	HALF REEL
	А	2000	9000	
T83	В	2000	8000	
CWR11	С	500	3000	
CWATT	D	500	2500	
	E	400	1500	
	A	2000	9000	1000
	В	2000	8000	1000
	С	500	3000	250
	D	500	2500	250
T95	R	600	N/A	300
T96	S	2500	10 000	1250
	V	2500	10 000	1250
	Х	2000	10 000	1000
	Y	1500	7500	750
	Z	1500	5000	750
	A, B, C, D, E	2500	10 000	1250
CWR06/CWR16	F	1000	4000	500
	G, H	600	2500	300
	E	500	N/A	250
T97	V	1000	N/A	500
T97 T98	R	300	N/A	150
130	Н	200	N/A	100
	F, Z	250	N/A	125

POWER DISSIPATION				
CASE CO	DDE	MAXIMUM PERMISSIBLE POWER DISSIPATION AT + 25 °C (W) IN FREE AIR		
	А	0.06		
	B, C	0.075		
CWR06/CWR16	D, E	0.085		
	F	0.11		
	G	0.12		
	Н	0.15		
	А	0.075		
Т83	В	0.085		
CWR11	С	0.110		
	D	0.150		
	E	0.165		
	A	0.075		
	В	0.085		
	С	0.110		
	D	0.150		
T95	R	0.250		
T96	S	0.080		
	V	0.095		
	Х	0.110		
	Y	0.120		
	Z	0.135		
	E	0.215		
Т97	F, R	0.250		
Т98	Z	0.265		
	V	0.140		

COTS Guide for Tantalum Capacitors

Vishay Sprague

PAD DIMENSIONS in inches [millimeters]					
	B C C B	A			
CASE CODE	WIDTH (A)	PAD METALLIZATION (B)	SEPARATION (C)		
Т95		· · · · · · · · · · · · · · · · · · ·			
В	0.120 [3.0]	0.059 [1.5]	0.059 [1.5]		
С	0.136 [3.5]	0.090 [2.3]	0.120 [3.1]		
D	0.180 [4.6]	0.090 [2.3]	0.136 [3.47]		
R	0.248 [6.3]	0.090 [2.3]	0.140 [3.6]		
S	0.080 [2.03]	0.040 [1.02]	0.040 [1.02]		
V	0.114 [2.9]	0.040 [1.02]	0.040 [1.02]		
X, Y, Z	0.114 [2.9]	0.065 [1.65]	0.122 [3.1]		
T96					
R	0.248 [6.3]	0.090 [2.3]	0.140 [3.6]		
CASE CODE	WIDTH (A)	PAD METALLIZATION (B)	SEPARATION (C)		
CWR06/CWR16	·	· · · · · · · · · · · · · · · · · · ·			
A	0.065 [1.6]	0.50 [1.3]	0.040 [1.0]		
В	0.065 [1.6]	0.70 [1.8]	0.055 [1.4]		
С	0.065 [1.6]	0.70 [1.8]	0.120 [3.0]		
D	0.115 [2.9]	0.70 [1.8]	0.070 [1.8]		
E	0.115 [2.9]	0.70 [1.8]	0.120 [3.0]		
F	0.150 [3.8]	0.70 [1.8]	0.140 [3.6]		
G	0.125 [3.2]	0.70 [1.8]	0.170 [4.3]		
Н	0.165 [4.2]	0.90 [2.3]	0.170 [4.3]		
T97 - T98		· · · · · ·			
E, V	0.196 [4.9]	0.090 [2.3]	0.140 [3.6]		
F, R, Z	0.260 [6.6]	0.090 [2.3]	0.140 [3.6]		
M, H, N	0.284 [7.2]	0.090 [2.3]	0.140 [3.6]		

PAD DIMENSIO	PAD DIMENSIONS in inches [millimeters]						
	←	D					
	← в —	\rightarrow \leftarrow C \rightarrow	← E →				
	,		\				
	, i		· · · · · · · · · · · · · · · · · · ·				
	1		· · · · · ·				
	`~						
CASE CODE	A (MIN.)	B (NOM.)	C (NOM.)	D (NOM.)			
T83 - CWR11							
А	0.071 [1.80]	0.085 [2.15]	0.053 [1.35]	0.222 [5.65]			
В	0.110 [2.80]	0.085 [2.15]	0.065 [1.65]	0.234 [5.95]			
С	0.110 [2.80]	0.106 [2.70]	0.124 [3.15]	0.337 [8.55]			
D	0.118 [3.00]	0.106 [2.70]	0.175 [4.45]	0.388 [9.85]			

Note * Preliminary, contact Product Marketing for availability.

0.118 [3.00]

Е

0.106 [2.70]

0.175 [4.45]

0.388 [9.85]

COTS Guide

Vishay Sprague

GUIDE TO APPLICATION

1. **A-C Ripple Current:** The maximum allowable ripple current shall be determined from the formula:

$$I_{\rm rms} = \sqrt{\frac{P}{R_{\rm ESR}}}$$

where,

- P = Power Dissipation in W at + 25 °C as given in the table in Paragraph Number 5 (Power Dissipation).
- R_{ESR} = The capacitor Equivalent Series Resistance at the specified frequency.
- 2. **A-C Ripple Voltage:** The maximum allowable ripple voltage shall be determined from the formula:

 $V_{rms} = I_{rms} \times Z$

or, from the formula:

$$V_{rms} = Z_{\sqrt{\frac{P}{R_{ESR}}}}$$

where,

- P = Power Dissipation in W at + 25 °C as given in the table Power Dissipation
 R_{ESR} = The capacitor Equivalent Series Resistance at the specified frequency.
- Z = The capacitor impedance at the specified frequency
- 2.1 The sum of the peak AC voltage plus the applied DC voltage shall not exceed the DC voltage rating of the capacitor.
- 2.2 The sum of the negative peak AC voltage plus the applied DC voltage shall not allow a voltage reversal exceeding 10 % of the DC working voltage at + 25 °C.
- Reverse Voltage: These capacitors are capable of withstanding peak voltages in the reverse direction equal to 10 % of the DC rating at + 25 °C and 5 % of the DC rating at + 85 °C.
- 4. **Temperature Derating:** If these capacitors are to be operated at temperatures above + 25 °C, the permissible rms ripple current or voltage shall be calculated using the derating factors as shown:

Temperature	Derating Factor
+ 25 °C	1.0
+ 85 °C	0.9
+ 125 °C	0.4

5. **Power Dissipation:** Power dissipation will be affected by the heat sinking capability of the mounting surface. Non-sinusoidal ripple current may produce heating effects which differ from those shown. It is important that the equivalent Irmsvalue be established when calculating permissible operating levels. (Power dissipation calculated using + 25 °C temperature rise.)

6. Attachment:

- 6.1 Soldering: Capacitors can be attached by conventional soldering techniques, convection, infrared reflow, wave soldering and hot plate methods. The Soldering Profile chart shows typical recomended time/temperature conditions for soldering. Preheating is recommended to reduce thermal stress. The recommended maximum preheat rate is 2 °C per second. Attachment with a soldering iron is not recommended due to the difficulty of controlling temperature and time at temperature. The soldering iron must never come in contact with the capacitor.
- 7. **Recommended Mounting Pad Geometries:** The nib must have sufficient clearance to avoid electrical contact with other components. The width dimension indicated is the same as the maximum width of the capacitor. This is to minimize lateral movement.
- 8. **Cleaning (Flux Removal) After Soldering:** Hi-Rel COTS capacitors are compatible with all commonly used solvents such as TES, TMS, Prelete, Chlorethane, Terpene and aqueous cleaning media. However, CFC/ODS products are not used in the production of these devices and are not recommended. Solvents containing methylene chloride or other epoxy solvents should be avoided since these will attack the epoxy encapsulation material.